

## **Overview of Big Data Analytics**

Chandan Mazumdar Professor, CSE, JU chandan.mazumdar@gmail.com June 02, 2018



## What is Analytics?

- The discovery and communication of meaningful patterns or interesting insights from data using
  - Mathematical properties of data
  - Computing for accessing and manipulating data
  - Domain knowledge to increase interpretability of data and results of analysis
  - Statistical techniques for drawing inferences or making predictions on/from data



### Why Analytics?

- 3 broad purpopses
- Using observed or measured data from a reallife situation
  - Uncover the characteristics of a data set based on its mathematical properties
  - Answer specific questions from one or more datasets with a given level of certainty
  - Develop a mathematical model for predicting the characteristics or behaviour of yet-unobserved data from the same situation



## APPLICATIONS



- Big change in decision making culture
- From HiPPO to Data-driven decisions
- Questions asked
  - What does the data say?
  - Where did the data come from?
  - What is the quality of data?
  - What kind of analyses has been made?
  - What is the confidence of the results of analyses?



- Advertising for sales promotion
- Targeted advertisements for customer groups
- Personalized promotional offers based on buying pattern, time of transaction and location (use of location data from customers' mobile phones)
- Surveillance Capitalism



### **Economics**

- Drivers:
  - Data is available in real time
  - Data is available at a larger scale
  - Data is available on novel types of variables
  - Data come with less structure
- Better Predictive Modeling
- Use of Government Administrative Data for Policy shift, and better and newer citizen services
- Economics of Data Industry



- Bioinformatics
- Molecular Biology
- Descriptive Ontology
- Evolutionary Developmental Biology
- Gathering huge descriptive data of the object and the environment



- Analytics to look into microbial chemistry and characterize antibiotics and other drug candidates
- Analytical Chemistry
- Computational Chemistry
- Quantum Chemistry
- Medicinal Chemistry

2.5 X 10<sup>18</sup> bytes (quintillion) / day :: 90% in last 2 years



## **Data Explosion: Example**

- In a single day 294 billion emails are sent
- 2 million blog posts are written everyday
- 172 million people visit Facebook everyday and more than 250 million photos are uploaded to Facebook everyday
- Twitter serves more than 500 million tweets per day
- Google conducts more than 4 billion searches per day, number of web pages indexed 130 trillion
- Walmart handles more than 1 million customer transactions every hour, which is estimated to contain more than 2.5 petabytes of data – the equivalent of 167 times the information contained in all the books in the US Library of Congress.
- IoT, Participatory Sensing will generate huge volumes of data

#### **VOLUME – VELOCITY - VARIETY**



### **Motivation:** What is the Big Deal?

- Cannot store data @ generation and collection
- Cannot transfer the huge data to where it can be processed
- Data sets are becoming increasingly heterogeneous (type, grain, structure, meaning, ...)
- Data sets are unorganized and hence not easily usable
- Very high volume data have high value for a very short time

However,

• The utility of the data is limited only by our ability to interpret it in time



Big data usually includes data sets with sizes beyond the ability of commonly-used software tools to capture, curate, manage, and process the data within a tolerable elapsed time

- Wikipedia

#### HARNESSING KNOWLEDGE



## **Data Mining:** The real challenge

### Change in approach

- Instead of using data to train a Machine Learning Engine that can extract knowledge from the data,
- Apply the algorithms to the data

Technology changes

- Change the structure of the data store
- Change the processing structure
- Change both



## How it all started: Google PageRank<sup>®</sup>

- Intent: Based on search terms, the web pages to be ranked and serviced
  - Term Spam: Web pages had hidden 'terms' to push rank
    - PageRank fought with idea of important page based on number of surfers and analyzing the terms in source page near the page link
  - Link Spam: Artificial pages with 'links' to push rank
    - TrustRank fought with idea of assigning score based on how many trustworthy page link to a web page
    - Spam Mass [(r-t)/r] closer to 1 indicate probable spam and hence remove from the pages serviced

## Note: This has to be done on billion+ pages in the web!

① PageRank was invented by Larry Page also founder of Google

## **Key Problem Domains: Areas of focus**

- Finding Similar Items in very large sets of highdimensional data
  - Shingling, Minhash Signature, Locality Sensitive Hashing, used in Plagiarism detection, Fingerprint matching
- Frequent Item-set Mining in very large data sets
  Market Basket Analysis, Association Rule Mining
- Clustering very large high dimensional data sets
  - Discovering clusters in numeric and categorical data sets
- Outlier Detection
  - Finding out anomalous events/items for Intrusion Detection, Fraud Detection

## **Key Problem Domains:** Areas of focus

Advertisement on the Web

2

- Funding web applications by advertising and not by subscriptions – Adwords Problem
- Recommendation Systems for Online Stores
  Content-based filtering, Collaborative filtering
- Mining very large graphs (social graphs)
  - Community detection, CDR analysis

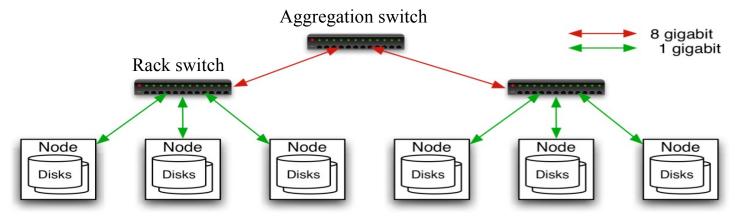
## Sanity check of result: Significance

- Bonferroni's Principle
  - As the input set is very large, it is important to make sure that the output is more significant than the general probability applied on random data item
- Matthew Effect
  - "Rich get richer" concept, where page that has links from many page keeps on increasing in "importance"



# Hadoop Distributed File System (HDFS)




- Need to process huge datasets on large clusters of computers
- Very expensive to build reliability into each application
- Nodes fail every day
  - Failure is expected, rather than exceptional
  - The number of nodes in a cluster is not constant
- Need a common infrastructure
  - Efficient, reliable, easy to use
  - Open Source, Apache Licence



## Who uses Hadoop?

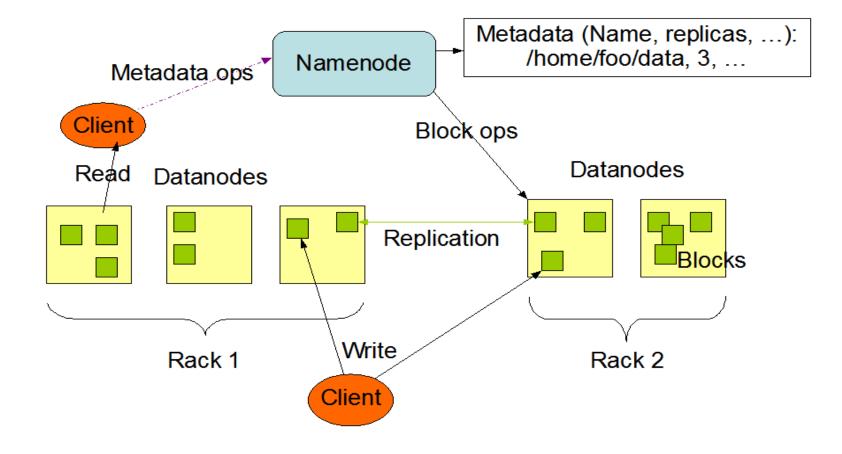
- Amazon/A9
- Facebook
- Google
- New York Times
- Yahoo!
- Oracle
- .... many more





- Typically in 2 level architecture
  - Nodes are commodity PCs
  - 30-40 nodes/rack
  - Uplink from rack is 8 gigabit
  - Rack-internal is 1 gigabit




- Very Large Distributed File System
  10K nodes, 100 million files, 10PB
- Assumes Commodity Hardware
  - Files are replicated to handle hardware failure
  - Detect failures and recover from them
- Optimized for Batch Processing
  - Data locations exposed so that computations can move to where data resides
  - Provides very high aggregate bandwidth

## Hadoop Distributed File System

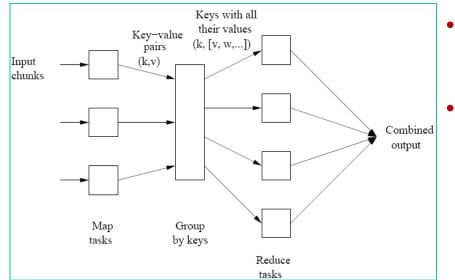
- Single Namespace for entire cluster
- Data Coherency
  - Write-once-read-many access model
  - Client can only append to existing files
- Files are broken up into blocks
  - Typically 64MB block size
  - Each block replicated on multiple DataNodes
- Intelligent Client
  - Client can find location of blocks
  - Client accesses data directly from DataNode



#### HDFS Architecture






#### Big Data Processing Architecture

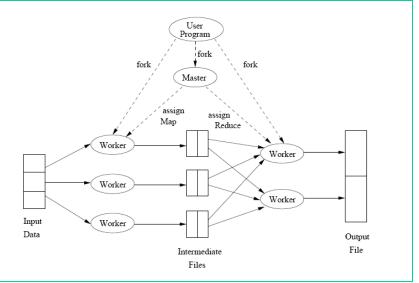
## **MAP REDUCE**



### Map Reduce: Google's Invention

- Map: User program that processes input to generate (key, value) pairs
- Reduce: User programs that act on the data sorted on 'key' of Map to generate the output




- Matrix Multiplication: MR is ideal for executing very large matrix multiplication<sup>a</sup>
- Relational Algebra supported:
  - Selection, Projection
  - Union, Intersection, Difference.
  - Natural Join.
  - Grouping and Aggregation

② Even if the matrix cannot fit the main memory Recursion / Cascading supported



### **Map Reduce:** Physical Architecture

- Worker Node: Can run on commodity hardware
- Master Node: Normal server scale hardware
- Connectivity: Gigabit per second throughput essential



- Data Block: 64 MB
- Input Data: Replicated across nodes so fault tolerant
- Tasks assigned to Worker: If a task fails need to redo only that task
- No memory between tasks
- Data with same 'Key' to be processed in same Reduce node



### Map Reduce: Complexity

- MR Complexity = Processing Cost + Communication Cost
  - Each task is very simple task so Communication Cost dominates
  - Communication Cost is the cost of transporting data from where it is created to where it is used.
- For MR, efficiency of an algorithm is estimated by calculating the sum of the sizes of the inputs to all the tasks



- Mathematics of Big Data
- Big Data ROI = Total Insights / Total Discovery Cost
- Topical Data Analysis Topological Organization of large data sets to identify areas of persistence and thus relevance
- Persistent homology



#### The art of correlation of information

## FROM INFORMATION TO INTELLIGENCE



- Behavioral
- Social
- Financial
- Medical
- Scientific
- Astronomical





# Data Streams, Test Data **POSTSCRIPT**



# **Data Streams:** Mining data from the flow

- Challenges / Techniques
  - **Sampling**, without loss of characteristics
  - Filtering, selecting the elements that belong to a set and discarding the rest
  - Distinct Elements, using statistical functions to arrive at counts of distinct elements
  - Standing Queries, to "collect" the answers in the fly
  - **Decaying Time Windows**, to weight the properties in the past as a weight of time



## THANK YOU !!!