
Software Reliability

Anup Dewanji

Indian Statistical Institute, Kolkata

02 June 2018

Anup Dewanji (ISI) Software Reliability 02 June 2018 1 / 26



Importance of Software

Almost all aspects of modern living require software. Some examples
follow.

Billing

ATM

On-line booking and purchase

ECG monitoring in a hospital’s ICU

Auto-pilots flying an aircraft

Banking

Applications running on mobile phones

Anup Dewanji (ISI) Software Reliability 02 June 2018 2 / 26



Importance of Software

Almost all aspects of modern living require software. Some examples
follow.

Billing

ATM

On-line booking and purchase

ECG monitoring in a hospital’s ICU

Auto-pilots flying an aircraft

Banking

Applications running on mobile phones

Preparation of this presentation

Anup Dewanji (ISI) Software Reliability 02 June 2018 2 / 26



Software Failure

A software can be said to have a failure if it does not produce the intended
result/output during its operation. This can happen due to many different
reasons.

Anup Dewanji (ISI) Software Reliability 02 June 2018 3 / 26



Software Failure

A software can be said to have a failure if it does not produce the intended
result/output during its operation. This can happen due to many different
reasons.

Famous software failures:

The Y2K bug

Mars Climate Orbiter by NASA in 1998

Radiation overdose by Therac-25 machines in the 1980’s

Power blackouts in the US in 2003

WannaCry ransomeware attack in 2017 on banking and other facilities

Anup Dewanji (ISI) Software Reliability 02 June 2018 3 / 26



Software Reliability

It is important to have a measure of how reliable a software is.

Several definitions exist depending on the problem at hand.

A commonality among many definitions is that the measure should
correlate with the probability of failure-free operation over a specified
duration of usage.

Anup Dewanji (ISI) Software Reliability 02 June 2018 4 / 26



Software Reliability

It is important to have a measure of how reliable a software is.

Several definitions exist depending on the problem at hand.

A commonality among many definitions is that the measure should
correlate with the probability of failure-free operation over a specified
duration of usage.

The reliability of a software is defined as the probability that
the software will serve its intended purpose for a specified
period of time (or, number of times) under a specified
condition.

Anup Dewanji (ISI) Software Reliability 02 June 2018 4 / 26



Major Objectives

Identify relevant data and select/develop a modeling approach.

Define reliability.

Evaluate/compute reliability under the chosen model in terms of the
unknown model parameters.

Estimate the model parameters and hence the reliability.

Anup Dewanji (ISI) Software Reliability 02 June 2018 5 / 26



Software Verification

Software verification has two parts:

(i) static verification ensures that the software meets the quality standards
for coding, design and complexity, and algorithm, etc., and
(ii) dynamic verification ensures proper functioning of the software during
its run-time.

This second part is also known as Software Testing, a process of executing
the software program with the goal of finding errors/faults/defects,
through application on test cases.

Anup Dewanji (ISI) Software Reliability 02 June 2018 6 / 26



Software Testing

There are various software testing scenarios.

Black-box Testing: The tester has no access to the source code and
no knowledge of the software.

White-box Testing: The tester has access to the source code and also
knowledge of the software.

Grey-box Testing: Some knowledge of the software, possibly no
access to the source code.

User-driven Testing: Users of a software voluntarily report a defect
through internet with the defect being logged in a specialized
database, called bug-database (e.g., beta-testing).

Anup Dewanji (ISI) Software Reliability 02 June 2018 7 / 26



Software Testing

Once an error occurs leading to detection of a fault, it is debugged.
In this context, there are two aspects each with two scenarios:

1. Immediate debugging vs Periodic debugging

2. Perfect debugging vs Imperfect debugging

Anup Dewanji (ISI) Software Reliability 02 June 2018 8 / 26



Software Reliability Models

The goal of software reliability modeling is to provide a probabilistic model
for the software defect discovery process. There are several modeling
approaches depending on the nature of the testing process and the
available data.

Modeling is usually done on continuous time scale, measured through
calender time, or CPU. One can also use a discrete time scale in which a
single run of the software represents one unit of time.

Interestingly, modeling depends on the type of software testing process
giving the nature of data that is to be expected, along with the associated
limitations.

Anup Dewanji (ISI) Software Reliability 02 June 2018 9 / 26



Software Reliability Models

1. Non-homogeneous Poisson Process (NHPP): Immediate Debugging

The cumulative defect counts N(t) by time t follows a NHPP with a
positive and non-decreasing mean value function Λ(t) =

∫
t

0 λ(u)du, where
λ(u) is interpreted as the defect detection rate, or intensity, at time t.

This implies

The defect count N(t) has a Poisson distribution with mean Λ(t).

For any time interval I , the number NI of defect counts in I has a
Poisson distribution with mean

∫
I
λ(t)dt.

The defect counts NI and NJ , in two disjoint time intervals I and J,
are independent of each other.

Anup Dewanji (ISI) Software Reliability 02 June 2018 10 / 26



Software Reliability Models

The intensity function λ(t), or the mean function Λ(t), is usually modeled
as a parametric function and the model parameters are estimated by using
the Poisson distribution of counts.

Different NHPP models:

(i) Goel-Okumoto (1979): λ(t) = a exp(−bt), a > 0, b > 0.

(ii) Musa-Okumoto (1984): Λ(t) = 1
θ
log(1 + λ0t), λ0 > 0, θ > 0.

(iii) Ohba (1984): Λ(t) = a

1+exp(−bt) , a > 0, b > 0.

Anup Dewanji (ISI) Software Reliability 02 June 2018 11 / 26



Software Reliability Models

2. Inter-Failure Time Models: Immediate Debugging

If Si denotes the ith ordered detection time of a fault, then Ti = Si − Si−1

for i = 2, · · · , n, with T1 = S1, are called the inter-failure times.

This approach models the joint distribution of (T1, · · · ,Tn) if n faults are
detected.

The model parameters are estimated by using the joint distribution of n
and the Ti ’s.

Anup Dewanji (ISI) Software Reliability 02 June 2018 12 / 26



Software Reliability Models

Different models for the Ti ’s:

(i) Jelinski-Moranda (1972): Ti ’s are independent with Ti having an
Exponential(λ(ν − i + 1)) distribution.
(ii) Littlewood-Verral (1973): Same as (i) with the Exponential
parameters having stochastically decreasing Gamma priors.
(iii) Moranda (1975): Same as (i) with the ith Exponential parameter
being exp(α+ βi).
(iv): Singpurwalla and Soyer (1985): Ti = αiT

θi

i−1 with the αi ’s modeled
as independent Log-Normal variates and the θi ’s modeled as an AR
process.

Anup Dewanji (ISI) Software Reliability 02 June 2018 13 / 26



Reliability of a Unit of Flight Control Software

Four versions corresponding to four testing activities with runs of
Integrated Simulation Testing (IST). The schedule for the number of IST
runs in each activity is as follows.

There are N = 126 modules in the software. The schedule is same for all
the modules except two.

Version 1: 187 IST runs
Version 2: 227 IST runs
Version 3: 187 IST runs
Version 4: 267 IST runs

Anup Dewanji (ISI) Software Reliability 02 June 2018 14 / 26



Reliability of a Unit of Flight Control Software

Four versions corresponding to four testing activities with runs of
Integrated Simulation Testing (IST). The schedule for the number of IST
runs in each activity is as follows.

There are N = 126 modules in the software. The schedule is same for all
the modules except two.

Version 1: 187 IST runs
Version 2: 227 IST runs
Version 3: 187 IST runs
Version 4: 267 IST runs

Errors detected within an activity are corrected at the end of the activity.

Anup Dewanji (ISI) Software Reliability 02 June 2018 14 / 26



Reliability of a Unit of Flight Control Software

Four versions corresponding to four testing activities with runs of
Integrated Simulation Testing (IST). The schedule for the number of IST
runs in each activity is as follows.

There are N = 126 modules in the software. The schedule is same for all
the modules except two.

Version 1: 187 IST runs
Version 2: 227 IST runs
Version 3: 187 IST runs
Version 4: 267 IST runs

Errors detected within an activity are corrected at the end of the activity.

For each module, we observe the number of simulation runs and number
of failures (runs with error) in different IST activities. There are altogether
six failures (detected errors), but no module having more than one failure.

Anup Dewanji (ISI) Software Reliability 02 June 2018 14 / 26



Reliability of a Unit of Flight Control Software

Definition of Reliability in this case:

Given all the design changes (that is, detection and correction of errors,
modification of the software to accommodate new requirements, etc.) up
to the current time, we define the reliability of the unit of software as the
probability of no failure due to this particular software unit, if another
single run of the Integrated Simulation Testing is to be carried out at this
time with a randomly selected input from the set of all possible inputs
under the identical computing environment and other conditions.

Note that this definition of reliability depends on the current time, in
particular, the experience up to the current time. This is eventually to be
equated with the probability of no failure in this particular software unit in
a mission.

Anup Dewanji (ISI) Software Reliability 02 June 2018 15 / 26



Reliability of a Unit of Flight Control Software

Some Features of the Data:

The time domain is inherently discrete with each run as one discrete
unit of time.

Debugging is not immediate.

There is a modular structure.

Identity of the module containing the error that caused failure is
available.

There are module-specific covariates (e.g., complexity, history of
errors during Code Inspection and Module Testing).

Different modules have different extent of exposure to testing.

Identity of the failed run is not available.

Anup Dewanji (ISI) Software Reliability 02 June 2018 16 / 26



Reliability of a Unit of Flight Control Software

Modeling:

A framework for fitting a Binomial distribution is very apparent from
earlier description.

Since the detected errors are corrected only at the end of one IST activity,
the failure probability of a particular module may be assumed to be the
same over the runs within an activity.

This probability of a failure (run with error) or success (error-free run) can
be modeled suitably to incorporate regression variables (covariates) in the
spirit of Generalized Linear Models, in particular, through the use of
logistic regression model.

Anup Dewanji (ISI) Software Reliability 02 June 2018 17 / 26



Reliability of a Unit of Flight Control Software

Reliability of this unit of software, after the testing process in the four
activities are over, is computed as the product, over the 126 modules, of
the conditional probability, given the experience up to the end of testing,
of an error-free run, assuming the modules to act independently.

This reliability will involve the associated model parameters which need to
be estimated from the observed data.

The model parameters can be estimated through the maximum likelihood
method along with its standard error.

Anup Dewanji (ISI) Software Reliability 02 June 2018 18 / 26



Reliability of a Unit of Flight Control Software

Reliability of this unit of software, after the testing process in the four
activities are over, is computed as the product, over the 126 modules, of
the conditional probability, given the experience up to the end of testing,
of an error-free run, assuming the modules to act independently.

This reliability will involve the associated model parameters which need to
be estimated from the observed data.

The model parameters can be estimated through the maximum likelihood
method along with its standard error.

Another measure of reliability, similar to Mean Time to Failure (MTTF), is
the expected number of simulation runs needed to have the next
error-producing run, given the current testing experience.

Anup Dewanji (ISI) Software Reliability 02 June 2018 18 / 26



Reliability of a Unit of Flight Control Software

The estimated reliability is 0.9979 with standard error 0.0026. The
approximate 95% confidence interval is obtained as [0.9929,1.0030].

Anup Dewanji (ISI) Software Reliability 02 June 2018 19 / 26



Reliability of a Unit of Flight Control Software

The estimated reliability is 0.9979 with standard error 0.0026. The
approximate 95% confidence interval is obtained as [0.9929,1.0030].

The estimated MTTF is 476.19 with standard error 1.2381. The
approximate 95% confidence interval is obtained as [473.76,478.62].

Anup Dewanji (ISI) Software Reliability 02 June 2018 19 / 26



The Modern Bug Database: Analysis of Python Data

Specialized software that enables software users to report defects
through the Internet

Reported defects are reviewed by software engineers to determine
whether they are really defects or not

Every confirmed and distinct defect carries a record in the database
containing

The calendar date when the defect was first reported
The type of defect (Example: Security, Performance, Behavior, Crash)
The software component affected by the defect

Example of a bug database: http://bugs.python.org

Anup Dewanji (ISI) Software Reliability 02 June 2018 20 / 26



The Modern Bug Database: Analysis of Python Data

Challenges in Bug Databases for Software Reliability Modeling:

Contain user-reported software defects subject to uncontrolled and
unavailable usage of the software

Usage rate is a function of time and is unknown

Reporting depends on the user (specialist vs casual)

Distribution of defect type depends on unknown use cases of the
software

No existing model for software reliability considers these important
confounding factors

Due to uncertain usage pattern, modeling based on time scale is
inappropriate

Anup Dewanji (ISI) Software Reliability 02 June 2018 21 / 26



The Modern Bug Database: Analysis of Python Data

A Novel Modeling Approach:

Uses the classification of reported defects into multiple types out of
which one is of primary interest for reliability purpose

Model is nonparametric w.r.t. the uncertain usage rate leading to a
partial likelihood analysis

Reliability metrics do not depend on the usage rate

The partial likelihood is developed in terms of, for each reported case, the
conditional probability that the currently reported defect is of the recorded
type, given the types and times of the previously reported cases and the
time of the currently reported case. This does not depend on the usage
pattern.

Model parameters are estimated via GLM procedures.

Anup Dewanji (ISI) Software Reliability 02 June 2018 22 / 26



The Modern Bug Database: Analysis of Python Data

Snapshot of the Python Bug Database as on Jan 31 2012:

Table : Summary of defects in the two versions of Python

Python 2.7 Python 2.6

Defect Type Count Percentage Count Percentage

Crash 130 5.7 % 124 6.3 %
Security 19 0.8 % 16 0.8 %
Others 2124 93.5 % 1835 92.9 %

Total Bugs 2273 100% 1975 100%

Anup Dewanji (ISI) Software Reliability 02 June 2018 23 / 26



The Modern Bug Database: Analysis of Python Data

Reliability Metrics: Assume only two types of defects; for the Python data,
these can be Crash and Others, Crash being the primary type.

Mean Number of Defects to Failure (MNDF): The expected number of
defects other than the Crash type to be reported before a Crash type is
reported.

Reliability R(N): Probability of not having a Crash type defect reported in
the next N reported defects.

Both the metrics do not depend on the underlying usage rate, but on the
other model parameters.

Anup Dewanji (ISI) Software Reliability 02 June 2018 24 / 26



The Modern Bug Database: Analysis of Python Data

Reliability Metrics: Assume only two types of defects; for the Python data,
these can be Crash and Others, Crash being the primary type.

Mean Number of Defects to Failure (MNDF): The expected number of
defects other than the Crash type to be reported before a Crash type is
reported.

Reliability R(N): Probability of not having a Crash type defect reported in
the next N reported defects.

Both the metrics do not depend on the underlying usage rate, but on the
other model parameters.

These metrics can be used for the three-type analysis as well.

Anup Dewanji (ISI) Software Reliability 02 June 2018 24 / 26



The Modern Bug Database: Analysis of Python Data

Table : The estimates of the reliability metrics

Python 2.7 Python 2.6

Analysis Metrics Estimate SE Estimate SE

Three-type R(N = 10)(Crash) 0.43 0.10 0.49 0.13
MNDF (Crash) 12.02 2.67 15.06 5.50
R(N = 10)(Security) 0.98 0.02 0.90 0.10
MNDF (Security) 55.91 17.67 55.15 20.28

Two-type R(N = 10)(Crash) 0.44 0.07 0.47 0.07
MNDF (Crash) 11.23 2.09 12.28 2.26

Anup Dewanji (ISI) Software Reliability 02 June 2018 25 / 26



THANK YOU

Anup Dewanji (ISI) Software Reliability 02 June 2018 26 / 26


